
Hierarchical Multi-Scale Convolutional Network
for Murmurs Detection on PCG Signals

Yujia Xu*, Xinqi Bao* , Hak-Keung Lam, Ernest N. Kamavuako

Department of Engineering, King’s College London, London

Abstract

Computer-aided analysis is helpful in improving heart
sound classification. PhysioNet Challenge 2022 provides
a platform for researchers to evaluate their proposed clas-
sification algorithms. In the Challenge, our team (HearT-
ech+) proposed a recording quality assessment method
based on frequency density distribution for label correc-
tion to prevent the poor-quality recording segments from
misleading network optimisation. Besides, a hierarchical
multi-scale convolutional neural network (HMS-Net) was
designed to conduct both the murmur (T1) and clinical
outcome (T2) classification. HMS-Net extracts convolu-
tional features from the spectrograms on multiple scales
and fuses them through its hierarchical architecture. The
network builds long short-term independencies between
multi-scale features and improves the classification per-
formance. Finally, the prediction of a patient is based on
the ensembled segment predictions by sliding window. In
the five-fold cross-validation by patients, the proposed al-
gorithm performed an average weighted accuracy of 0.81
(best 0.853) on T1 and an average challenge score of 9808
(best 9242) on T2. In the Challenge hidden validation set,
the proposed algorithm achieved 0.806 weighted accuracy
on T1 and 9120 challenge score on T2, ranking 1st and 4th

out of 305 entries, respectively. In the final hidden testing
set, T1 was 0.776 ranking 2nd, and T2 was 12069.

1. Introduction

Early screening is vital in detecting cardiovascular dis-
ease (CVD) and necessary action to reduce the risk of
worsening heart disease. The initial suspicion often de-
pends on the medical staff to listen to murmurs in the
heart sound (recorded as phonocardiogram, PCG) during
auscultation. However, due to the limitation of listening
ability and clinical experience, auscultation is not always
trustworthy [1]. Therefore, a more robust and accurate
computer-aided PCG analysis algorithm is greatly needed
to improve the situation.

*The authors contributed equally to this work.

The existing PCG classification methods can be di-
vided into two types: (1) feature-based machine learning
(ML) methods and (2) deep learning (DL) based methods.
Feature-based ML requires manual extraction of the fea-
tures, which heavily depends on PCG segmentation and
feature settings. This usually causes robustness and porta-
bility issues. The inputs can be raw signals or their time-
frequency distributions (TFDs) for DL-based approaches.
Deep CNNs can extract the spatial features automatically,
generally skip the segmentation and require fewer input
settings. However, DL approaches require large datasets
to improve classification performance. In recent years,
large PCG datasets such as [2] and [3] have made DL ap-
proaches more competitive.

In the previous study [4], the 2-D TFDs as inputs for
PCG classification were proved to outperform the raw sig-
nals on deep CNNs. Furthermore, the current mainstream
CNNs were designed for the image recognition field with
the local attention characteristic [5]. The receptive field
of each CNN layer is fixed without considering the long
short-term dependencies of the time-domain signal infor-
mation. Therefore, the primary aim of this study is to de-
sign a novel CNN with hierarchical multi-scale architec-
ture to improve the classification performance by fusing
multi-scale features. In addition, the low-quality record-
ing segments involving artefacts may mislead the network
optimisation. Hence, the second aim of this study is to
improve the classification accuracy by designing a quality
assessment method to correct the labels for the low-quality
segments. The proposed algorithm has been applied in the
PhysioNet Challenge to verify the performance.

2. Methodology

2.1. Database and Pre-processing

The database used in this study is the PhysioNet Chal-
lenge 2022 publicly released data, containing 3163 PCG
recordings from 942 patients (Murmurs: 695 absent, 68
unknown and 179 present; Outcomes: 456 abnormal and
486 normal.). See [4] for more details.

In this study, the recording sampling frequency is down-
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sampled from 4000 to 2000 Hz for faster data loading
speed without information loss of the murmurs (ranging
from 20–500 Hz [6]). Afterwards, the signal is normalised
by z-score normalisation.

2.2. Quality Assessment Method

The murmur labels given in the database correspond to
each auscultation location recording of the patients, which
means a recording is ’absent’, ’unknown’, or ’present’. In
[7], the PCG duration effect has been proved minor on
CNN performance. Thus, in this study, the recordings are
cropped into 3s segments as CNN inputs, considering both
the shortest signal length 5s and CNN receptive fields.

However, the PCG recordings contain many low-quality
segments caused by ambient noise, artefacts, body friction,
etc., which will mislead CNN optimisation. Hence, a qual-
ity assessment for the murmur label correction of segments
is needed. Since the frequency of normal heart sound is be-
tween 20 − 200 Hz, the energy of most murmurs is much
less than that of heart sound [6]. The selected assessment
criteria is the ratio of spectral density between 20−200 Hz
to full band (0− 1000 Hz), named quality ratio.

(a) Ratio 0.28 (b) Ratio 0.52 (c) Ratio 0.26

Figure 1: Spectrogram of a segment with a quality ratio of
(a) 0.28 from signal labelled ’absent’. (b) 0.52 from the
same signal. (c) 0.26 from signal labelled ’unknown’.

Fig. 1a and 1b are spectrograms of two segments from
one ’absent’ recording. Fig. 1c is of a segment from an
’unknown’ recording. There are visible differences be-
tween 1a and 1b, especially in the higher frequency bands.
On the contrary, these high-frequency noises in 1a are sim-
ilar to those in 1c. After manual frequency analysis on
recordings, the label correction strategy is: if the quality
ratio is larger than 30%, this segment murmur label fol-
lows the recording label. Otherwise, it will be relabelled as
’unknown’. It should be noted this label correction is only
for murmur labels but keep outcome labels unchanged.

2.3. Model Interpretation

The CNN inputs are the multi-scale spectrograms of 3s
segments. Three scales (×1.0, ×0.5, ×0.25) are selected.
The parameters for the spectrograms are given in Table 1.

The multi-scale spectrograms provide CNNs with time-
frequency features in different resolutions and reduce the
spatial information loss in single spectrogram.

Table 1: Parameter settings for multi-scale spectrogram.

Scale Nfft Window length Hop length
×1.0 446 200 27
×0.5 222 100 54
×0.25 110 50 108

Inspired by [8,9], in this study, a hierarchical multi-scale
convolutional neural network (HMS-Net) is proposed to
improve the PCG classification performance by building
long short-term dependencies between multi-scale inputs
with its hierarchical architecture. Fig. 2a illustrates its
overall structure. The fundamental element in HMS-Net,
convolutional block, refers to ResNet [10], with its struc-
ture diagram shown in Fig. 2b. Three-scale spectrograms
of a segment input HMS-Net and output the 3-class mur-
mur prediction. For outcomes prediction, it combines with
patient information and outputs the binary result.

In HMS-Net, the convolutional features of the multi-
scale spectrograms are extracted at different depths. A
larger scale requires deeper layers; thus, HMS-Net has
four phases containing layers with incremental depths for
extracting features from different scales. For example, in
Phase 1, two sub-networks are employed to convolve the
features from Scale 1 and Scale 2. The 2-scale features are
then concatenated in channel dimension and passed to the
next phase. Phase 4 summarises the multi-scale convolu-
tional features by global average pooling and classifies the
segment with a linear layer. Overall, HMS-Net extracts
features from multiple scales separately at the beginning
and fuse these features with its hierarchical design.

Regarding the outcome classifier, patient information,
including age, gender (one-hot), pregnant status, height,
and weight, is added as extra information to distinguish
patients with abnormal clinical outcomes. As shown in
Fig. 2a, 256 patient features are extracted from these in-
formation via a 4-layer multi-layer perceptron (MLP). The
final outcome prediction is obtained from both the convo-
lutional features and the patient features.

2.4. Training Settings

The optimiser is Adamw and the max training epoch is
set to 100. The initial learning rate is 10−3. When the
training loss has stopped decreasing for five epochs, the
learning rate is multiplied by 0.1. The loss function is
cross-entropy with 0.1 label smoothing. In each batch, 128
multi-scale spectrograms are fed to HMS-Net.
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(a) (b)

Figure 2: (a) Overall structure of the HMS-Net. The in-box text denotes the layer parameters, e.g., ’3 × 3 Conv, 128, /2’
represents a convolution layer with 128 3 × 3 kernels and stride 2. The text above boxes denotes the output size. The
colours in convolution blocks indicate the information from certain scales. (b) Structure of a residual convolution block.

2.5. Murmur Classification

Since the HMS-Net is designed to classify the seg-
ments, for recording classification, a sliding window with
3s width and 1s step is applied to classify the whole record-
ing continuously. For a frame slided by multiple win-
dows, its label is calculated by the averaged distribution
probabilities of the passed windows. The prediction for
the recording is the serial labels per second. If the pre-
dicted ’unknown’ accounts for over 80% of the serial la-
bels, the recording is catalogued as ’unknown’. Otherwise,
the recording is classified with the majority of serial labels
(exclude ’unknown’).

For patient classification, if one location recording is
classified as ’present’, the patient is labelled ’present’. In
terms of ’absent’ and ’unknown’, the patients are classified
by the majority of location recording labels. When there is
the same number of ’absent’ and ’unknown’ recordings of
the patient, ’absent’ has the priority. All the mentioned
thresholds are chosen based on local testing.

2.6. Outcome Classification

Our outcome prediction strategy is similar to murmur
prediction but does not involve ’unknown’ issue. The se-
rial labels (’abnormal’ or ’normal’) per second are ob-
tained by sliding window as well. If over 1/3 frames are
predicted as ’abnormal’, the recording is predicted as ’ab-
normal’. When a patient has at least one predicted ’abnor-
mal’ recording, our strategy diagnoses the patient as ’ab-

normal’. Otherwise, the patient is diagnosed as ’normal’.

3. Results

We used five-fold cross-validation by patients to fairly
evaluate our methods. See [11] for the scoring metrics of
murmur weighted accuracy and outcome challenge score.

(a) (b)

Figure 3: Confusion matrices of (a) murmur classification
(b) outcome classification.

Our method achieved an average murmur classification
accuracy of 91.37% (best 92.85%) on segments in the
five-fold cross-validation. It performed 83.78% averaged
murmur classification accuracy on patients and 0.81 aver-
aged weighted score. Fig. 3a shows the confusion ma-
trix of the best fold on patient classification. The over-
all accuracy was 89.94%, respectively, on ’present’ was
85.0%, ’unknown’ was 53.84% and ’absent’ was 94.85%.
The weighted murmur accuracy was 0.853. Regarding pa-
tient outcome classification, our method achieved averaged
56.83% accuracy (best 62.96%) and 9808 averaged out-
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come (best 9242). The outcome confusion matrix for high-
est outcome score is shown in Fig. 3b. In the blind vali-
dation set, the algorithm achieved 0.806 murmur weighted
accuracy and 9120 outcome challenge score, and in the
blind testing set, they were 0.776 and 12069, respectively.

4. Discussion and Conclusion

The following discussions focus on our experiences dur-
ing the challenge and the vision for future work.

Label Correction The low-quality (’unknown’) seg-
ments or recordings caused by artefacts exist consider-
ably and are often fused with heart sounds and murmurs.
When training the CNN model on segment inputs, these
low-quality parts will greatly mislead the model. It is
necessary to identify them while often being neglected.
Therefore, a quality assessment method by spectral density
was proposed to alleviate the label inconsistency problem.
With the assessment method, the accuracy on segments
increased by approximately 5%. Though, in the current
method design, it did not involve too many criteria consid-
ering the data loading speed for the DL methods. There
is huge room to extend the assessment criteria by the PCG
time-domain or frequency-domain features to achieve bet-
ter label correction and improve the classification accu-
racy. In future work, removing the unknown segments in
data pre-processing or alleviating its effect in the testing
interface should be studied.

HMS-Net HMS-Net holds the advantage of combining
the features from multi-scale spectrograms to improve the
classification performance. However, work could still be
done on determining the optimal network depth and width,
parameter optimisation, etc., to make the network more ef-
ficient. Furthermore, the low-quality segments issue made
it hard to objectively evaluate its segment classification
performance when many label inconsistencies occurred.
This is also why the confusion matrix on segments was not
provided in the results. Despite this, in local tests, HMS-
Net performed approximately 1% better than ResNet34.

Outcome Prediction The clinical outcomes diagnosed
by cardiologists are based on multiple assessments. Only
PCG with basic patient information is far from enough to
reliably and accurately identify the outcome. More patient
diagnostic information like echocardiogram can be served
as extra inputs to provide CNNs with more valuable infor-
mation. Besides, the outcome result is quite sensitive to
hyper-parameter settings.

Overall, this study proposed a hierarchical multi-scale
convolutional neural network with a signal quality assess-
ment method to classify PCG. In the PhysioNet Challenge
2022, it performed outstandingly with 2nd in murmur de-
tection and also top scores in clinical outcome. The pro-
posed method may be inspiring and significant in future
PCG classification design.
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